Quasi-monte Carlo Strategies for Stochastic Optimization
نویسندگان
چکیده
In this paper we discuss the issue of solving stochastic optimization problems using sampling methods. Numerical results have shown that using variance reduction techniques from statistics can result in significant improvements over Monte Carlo sampling in terms of the number of samples needed for convergence of the optimal objective value and optimal solution to a stochastic optimization problem. Among these techniques are stratified sampling and QuasiMonte Carlo sampling. However, for problems in high dimension, it may be computationally inefficient to calculate Quasi-Monte Carlo point sets in the full dimension. Rather, we wish to identify which dimensions are most important to the convergence and implement a Quasi-Monte Carlo sampling scheme with padding, where the important dimensions are sampled via Quasi-Monte Carlo sampling and the remaining dimensions with Monte Carlo sampling. We then incorporate this sampling scheme into an external sampling algorithm (ES-QMCP) to solve stochastic optimization problems.
منابع مشابه
Algorithms (X, sigma, eta): Quasi-random Mutations for Evolution Strategies
DRAFT OF A PAPER PUBLISHED IN EA’2005 : Anne Auger, Mohamed Jebalia, Olivier Teytaud. (X,sigma,eta) : quasi-random mutations for Evolution Strategies. Proceedings of Evolutionary Algorihtms’2005, 12 pages. Randomization is an efficient tool for global optimization. We here define a method which keeps : – the order 0 of evolutionary algorithms (no gradient) ; – the stochastic aspect of evolution...
متن کاملOn Rates of Convergence for Stochastic Optimization Problems Under Non--Independent and Identically Distributed Sampling
In this paper we discuss the issue of solving stochastic optimization problems by means of sample average approximations. Our focus is on rates of convergence of estimators of optimal solutions and optimal values with respect to the sample size. This is a well-studied problem in case the samples are independent and identically distributed (i.e., when standard Monte Carlo simulation is used); he...
متن کاملScenario Generation for Stochastic Problems via the Sparse Grid Method
Efficient generation of scenarios is a central problem in evaluating the expected value of a random function in the stochastic optimization. We study the use of sparse grid scenario generation method for this purpose. We show that this method is uniformly convergent, hence, also epi-convergent. We numerically compare the performance of the sparse grid method with several Quasi Monte Carlo (QMC)...
متن کاملApproximation of Stochastic Programming Problems
In Stochastic Programming, the aim is often the optimization of a criterion function that can be written as an integral or mean functional with respect to a probability measure P. When this functional cannot be computed in closed form, it is customary to approximate it through an empirical mean functional based on a random Monte Carlo sample. Several improved methods have been proposed, using q...
متن کاملOn Rates of Convergence for Stochastic Optimization Problems under Non-i.i.d. Sampling
In this paper we discuss the issue of solving stochastic optimization problems by means of sample average approximations. Our focus is on rates of convergence of estimators of optimal solutions and optimal values with respect to the sample size. This is a well studied problem in case the samples are independent and identically distributed (i.e., when standard Monte Carlo is used); here, we stud...
متن کامل